不过,德国却也并不需要像美国那样,对核弹工程进行不计成本的巨额投入。
历史上,美国之所以在曼哈顿工程中花了那么多钱,究其原因,完全是由于自身缺乏经验的缘故。由于无法预判气体扩散、和电磁分离这两种手段对铀235的最终浓缩效果,以及用钚239作为原料的核弹究竟具备多高的可行度,财大气粗的美国人选择了三种方法齐头并进的最为暴力的方式;这大大增加了人员和物资的消耗,光是三种不同类型工厂的前期建设费用都是天文数字。最后美国人既造出了铀弹,又造出了钚弹,倒也是超额完成了核子武器的研制任务;不过对于方彦来说,只需要为德国选择一条最为立竿见影的捷径就好了。
作为自然界唯一能够裂变的核素,铀235可谓是制造裂变型核弹的最直接的来源。根据物理,只需准备数十千克纯度超过90的这种核素,就能实现不可控式的链式反应,引发核爆。然而要想实现这一点,难度却可以说是更比天高。在天然铀中,铀235的含量只有07,其余超过99都是不能裂变的铀238;这两种同位素的化学性质完全相同,常规方法根本不能将它们分离提纯。
为了解决这项难题,美国人在曼哈顿工程中采用的办法,便是气体扩散和电磁分离。然而由于铀235和铀238赖以区分的质量差距实在太过微小(仅为13),这两项工作都进行得极为困难且缓慢:前者需要让六氟化铀气体数千次地通过扩散薄膜,后者则需要用到大量上千吨的超巨型磁铁,每天也只能分离20多毫克铀235——那14万吨的白银线圈就是用在了这些磁铁上面。而这些都消耗了海量的资源、人力、和时间。可以说,美国在原子弹计划中投入的人力物力,除了前期建设和技术研发之外,绝大部分都消耗在了高纯度铀235的浓缩上面。这种氪金玩家的烧钱行径,显然是战争时期的德国不适合效仿的。
而如果选择用钚239作为核弹原料,上述问题便可以得到几乎完美的解决。这是一种在可控的核反应堆中生成的人造物质,化学性质和不同元素的铀有着明显区别;只需要用萃取等传统化学手段,便能将钚239从乏燃料棒中轻易提纯收集。最为关键的是,建造一座核反应堆,只需用纯度为3的铀235就能运作,这相比于要把铀235纯度提高到90制造铀弹,无疑大大降低了难度和工作量。
此外,用钚239制造的核弹,其威力也要比铀弹更大。后者至少要填充15kg铀235才能满足核爆的最低需求,而前者只需5kg即可。这一点又反过来进一步提升了钚弹在原料来源上的优势,使得德国核弹的量产成为可能。当然,钚弹相比于铀弹也存在着明显缺点。铀弹造好后放置50年,其安全性和威力都不会发生变化,而钚弹放个7~8年,其核心就因为衰变而变得不稳定了。更为痛苦的是,钚239拥有极大的化学毒性和放射性,属于高危物质;人如果在近距离上与之接触,很容易就会遭到不可逆转的致命伤害。
不过对于方彦来说,钚弹存在的这些问题都已经不重要了。且不说德国在战争期间研制的核弹根本不会存放超过1年,光是那份来自人员上的危险,便早以在战争这个死亡嗜血的大环境下变得黯然失色。更何况,从事科学应用项目,哪里又有不冒风险的?那位以自己名字命名了世界最高科学荣誉奖金的诺贝尔,不知有多少次差点把自己炸死,这点危险根本算不得什么大事!
如果要形象的做出一个比喻,那么钚弹就是傻大黑粗的t-54,而铀弹则是精密细致的46巴顿。对于迫切需要解决有无问题的德国来说,前者显然是无可争辩的最佳选择。而德国一旦掌握了这种能够有效使用的核子武器,必定能在军事和政治层面产生出无与伦比的威慑力:欧洲大陆上再不会有敢于对抗柏林的力量,而美国也会因无法承受与一个拥核大国进行战争的巨大风险,而选择与德国走到谈判桌前。等到德国赢得了战争,再回过头来搞铀弹不迟,届时德国已经能聚集起足够的人力物力,追上这份差距不会有任何问题。(未完待续。)