收藏本站( Ctrl+D )
当前位置:朴酷文学>都市言情>我只想当一个安静的学霸> 090章 光学和量子论

090章 光学和量子论(2 / 2)

从宏观的光学折射到微观的离子俘获,从海市蜃楼到电子基态,这没有什么联系。

物理学包含的东西太多了,沈奇切换到量子模式,开始解答这道16分的计算题。

复赛开局就是两头拦路虎,第二题也不轻松。

首先,沈奇需要从海森堡身上找到灵感。

海森堡并不是个地名,他是德国的一位杰出物理学家,对量子论的贡献仅次于爱因斯坦。

海森堡是个人才甚至可以说是物理天才,他在31岁时就获得了诺贝尔物理学奖。爱因斯坦获得诺贝尔物理学奖时年已不惑。

历史上对于海森堡的评价存在争议性,他在二战期间为德国纳粹搞科研,研究原子弹。当然了,最先搞出原子弹并运用于实战的是美国人。

抛开海森堡的政治取向不谈,他提出的“海森堡不确定性原理”在学术界地位很高。

沈奇先使用“海森堡不确定性原理”突袭一波,设a+中唯一的电子处于基态。

在此态中稍加处理可得电子到原子核中心距离平方值的平均值r02。

这是一个并不复杂的数学运算。

参加物竞复赛的高中生只需知道,r02定义为位置坐标不确定量平方(x)2、(y)2、(z)2之和即可。

优秀的高中物竞选手的要求是能简单运用“海森堡不确定性原理”,不必深入理解。深入理解那是大学生的业务,以后再说吧。

依葫芦画瓢,沈奇在此态中得到电子动量平方的平均值p02。

a+离子俘获一个电子后发射一个光子,这个过程必然遵守能量守恒、动量守恒。

两个守恒关系都包含发射光子的角频率w0,它们构成包含w0的方程组。

由海森堡不确定性原理:

(x)(px)≥1/2 ?

(y)(py)≥1/2 ?

(z)(pz)≥1/2 ?

能量守恒方程可具体表示为:

1/2meve2+1/2v2+e离=1/2μ2+e’离+?w0

接下来需要实施一波稍显复杂的数学操作,这个操作对沈奇来说不难:

oo喵oo……

(上面这个式子在word中显示是乱码,脑补吧,作者无能为力)

数学、物理学研究到一定程度在外人看来跟玄学没太大区别。

数学家、物理学家不需用任何文字语言表达思想,他们一言不合就抛出一堆符号,自己看吧,看懂了咱们再说话。

历经一系列的推导演算,沈奇最终得到了z的值。

z=4

“这……z等于4。”沈奇略作思考,在心中默数,氢氦锂铍硼、碳氮氧氟氖……

推荐都市大神老施新书:

上一页 目录 +书签 下一章